Application of the additivity of group energies to understand conformational preference: the anomeric effect.

نویسندگان

  • Fernando Cortés-Guzmán
  • Jesús Hernández-Trujillo
  • Gabriel Cuevas
چکیده

The conformational preference in normal and reverse anomeric effects is analyzed by taking advantage of the known additivity and transferability of functional group energies defined by the gradient of the electron density. As the anomeric effect has an energetic origin and every change in the electron density produces an energetic change, an explanation of this phenomenon should be based on the density changes taking place in a conformational equilibrium. The total energy of substituted cyclohexanoids is partitioned into ring and substituent contributions and the preferred conformation is the result of a balance between them. This new alternative approach allows understanding of the anomeric effect in terms of group energy contributions. In general, the most stable conformer in both the anomeric and reverse anomeric effects is that where the ring transfers charge to the heteroatom in the substituent during the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio Study and NBO Analysis of Conformational Properties of 2-Substituted Cyclohexane-1,3-diones and its Analogues Containing S and Se Atoms

NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) and ab initio molecular orbital (HF/6-311+G**) based methods were used to study the anomeric effects (AE), electrostatic interactions, dipole-dipole interactions and steric repulsion effects on the conformational properties of 2-methoxy- (1), 2-methylthio- (2), 2-methylseleno- (3), 2-fluoro- (4), 2-chloro- (5) and 2-bromocyclohexa...

متن کامل

Ab initio Study and NBO Analysis of Conformational Properties of 2-Substituted Cyclohexane-1,3-diones and its Analogues Containing S and Se Atoms

NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) and ab initio molecular orbital (HF/6-311+G**) based methods were used to study the anomeric effects (AE), electrostatic interactions, dipole-dipole interactions and steric repulsion effects on the conformational properties of 2-methoxy- (1), 2-methylthio- (2), 2-methylseleno- (3), 2-fluoro- (4), 2-chloro- (5) and 2-bromocyclohexa...

متن کامل

Theoretical study of conformational properties and the anomeric effect study of the 2- phosphinanes

Ab initio HF/6-31G* Methode was employed to calculate  the bond length in 2- phosphinanes  when electronegative groups was at C-2 tend axial and equatorial positions. The magnitude of  the anomeric effect depends on the nature of the substituent, the effect of the substituent can be seen by comparing the bond length in 2-chloro and 2-boromo substituented phosphinanes. The effect of anomeric eff...

متن کامل

Solvent effect investigation on the Conformational behaviors of 1-fluoro-N, N-dimethylmethanamine and analogs containing P, As atoms

NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) based methods were used to study the anomeric effects (AE), Stereoelectronic interactions, dipole-dipole interactions on the conformational properties of 1-Fluoro-N, N-dimethylmethanamine (1) and phosphorus (2) and arsenic (3) analogues.Moreover, relationships between stability of the anti-conformations of 1-Fluoro-N, N-dimethylme...

متن کامل

Theoretical study of conformational properties and the anomeric effect study of the 2- phosphinanes

Ab initio HF/6-31G* Methode was employed to calculate  the bond length in 2- phosphinanes  when electronegative groups was at C-2 tend axial and equatorial positions. The magnitude of  the anomeric effect depends on the nature of the substituent, the effect of the substituent can be seen by comparing the bond length in 2-chloro and 2-boromo substituented phosphinanes. The effect of anomeric eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 40  شماره 

صفحات  -

تاریخ انتشار 2010